Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1).
نویسندگان
چکیده
Polymorphonuclear leukocytes (PMNs) migrate from the blood into areas of inflammation by binding to the endothelial cells of blood vessels via adhesion molecules. Vascular adhesion protein-1 (VAP-1) is one of the molecules mediating leukocyte-endothelial cell interactions. It is also an endothelial cell-surface enzyme (amine oxidase) that produces reactive oxygen species during the catalytic reaction. To study the role of the enzymatic activity of VAP-1 in PMN extravasation, we used an enzymatically inactive VAP-1 mutant, specific amine oxidase inhibitors (including a novel small molecule compound), and anti-VAP-1 antibodies in several flow-dependent models. The enzyme inhibitors diminished PMN rolling on and transmigration through human endothelial cells under conditions of laminar shear stress in vitro. Notably, the enzyme inactivating point mutation abolished the capacity of VAP-1 to mediate transmigration. Moreover, the new VAP-1 inhibitor effectively prevented the extravasation of PMNs in an animal model of inflammation. These data show that the oxidase activity of VAP-1 controls PMN exit from the blood during the relatively poorly understood transmigration step.
منابع مشابه
HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1)
Polymorphonuclear leukocytes (PMNs) migrate from the blood into areas of inflammation by binding to the endothelial cells of blood vessels via adhesion molecules. Vascular adhesion protein-1 (VAP-1) is one of the molecules mediating leukocyte–endothelial cell interactions. It is also an endothelial cell–surface enzyme (amine oxidase) that produces reactive oxygen species during the catalytic re...
متن کاملVascular adhesion protein 1 (VAP-1) functions as a molecular brake during granulocyte rolling and mediates recruitment in vivo.
Granulocyte extravasation from the blood into tissues is a prerequisite for a proper inflammatory response. It is regulated by a multistep adhesion cascade consisting of successive contacts between leukocyte surface receptors and their endothelial ligands on vessels. Vascular adhesion protein 1 (VAP-1) is an endothelial surface glycoprotein with two functions. It is an enzyme (monoamine oxidase...
متن کاملVascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells.
Vascular adhesion protein-1 (VAP-1) is an amine oxidase and adhesion receptor that is expressed by endothelium in the human liver. The hepatic sinusoids are perfused by blood at low flow rates, and sinusoidal endothelium lacks selectin expression and has low levels of CD31, suggesting that VAP-1 may play a specific role in lymphocyte recruitment to the liver. In support of this we now report th...
متن کاملHuman vascular adhesion protein-1 (VAP-1) plays a critical role in lymphocyte-endothelial cell adhesion cascade under shear.
Lymphocyte binding to vascular endothelium is a prerequisite for the movement of immune cells from the blood into lymphoid tissues and into sites of inflammation. Human vascular adhesion protein-1 (VAP-1) is an endothelial glycoprotein involved in this interaction. It also displays an enzymatic (monoamine oxidase) activity. Here we examined how recombinant human VAP-1 mediates lymphocyte bindin...
متن کاملFunction-blocking antibodies to human vascular adhesion protein-1: a potential anti-inflammatory therapy.
Human vascular adhesion protein-1 (VAP-1) is a homodimeric 170-kDa sialoglycoprotein that is expressed on the surface of endothelial cells and functions as a semicarbazide-sensitive amine oxidase and as an adhesion molecule. Blockade of VAP-1 has been shown to reduce leukocyte adhesion and transmigration in in vivo and in vitro models, suggesting that VAP-1 is a potential target for anti-inflam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 103 9 شماره
صفحات -
تاریخ انتشار 2004